Publications

39. Prasher, A.; Hu, H.; Tanaka, J.; Nicewicz, D. A.; Wei, Y. “Alcohol mediated degenerate chain transfer controlled cationic polymerisation of para-alkoxystyrene” Polym. Chem. 2019

polym

38. Chen, W.; Huang, Z.; Tay, N. E. S.; Giglio, B.; Wang, M.; Wang, H.; Zhanhong, W.; Nicewicz, D. A.; Zibo, L. “Direct arene C–H fluorination with 18F− via organic photoredox catalysis” Science 2019, 364, 1170-1174.

CH fluorination

37. Cole, C. L.; Nicewicz, D. A. “Mechanistic Investigations into the Cation Radical Newman–Kwart Rearrangement” ACS Catal. 2019, 9, 3926-3935.

NKR Mech

36. White, A. R.; Wang, L.; Nicewicz, D. A. “Synthesis and Characterization of Acridinium Dyes for Photoredox Catalysis” Synlett 2019, 30, 827-832.

acridinium

35. McManus, J. B.; Onuska, N. P. R.; Nicewicz, D. A. “Generation and Alkylation of α–Carbamyl Radicals via Organic Photoredox Catalysis” J. Am. Chem. Soc. 2018, 140, 9056-9060.

Amino Rad

34. Morse, P. D.; Nguyen, T. M.; Cruz, C. L.; Nicewicz, D. A. “Enantioselective counter-anions in photoredox catalysis: The asymmetric cation radical Diels-Alder reaction” Tetrahedron 2018, 74, 3266-3272. Invited contribution for special issue honoring Seth Herzon

Asymm DA

33. Margrey, K. A.; Czaplysi, W. L.; Nicewicz, D. A.; Alexanian, E. J. “A General Strategy for Aliphatic C–H Functionalization Enabled by Organic Photoredox Catalysis” J. Am. Chem. Soc. 2018, 140, 4213-4217.

Aliphatic C-H functionalization

32. Wu, F.; Wang, L.; Chen, J.; Nicewicz, D. A.; Huang, Y. “Direct Synthesis of Polysubstituted Aldehydes via Visible-Light Catalysis” Angew. Chem. Int. Ed. 2018, 57, 2174-2178.

Direct Synthesis of Polysubstituted Aldehydes via Visible-Light Catalysis

31. Tay, N. E. S.; Nicewicz, D. A. “Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis” J. Am. Chem. Soc. 2017, 139, 16100-16104.

Cation Radical Accelerated Nucleophilic Aromatic Substitution via Organic Photoredox Catalysis

30. Margrey, K. A.; Levens, A.; Nicewicz, D. A. “Direct Aryl C-H Amination with Primary Amines using Organic Photoredox Catalysis” Angew. Chem. Int. Ed. 2017, 56, 1-6.

Direct Aryl C-H Amination with Primary Amines using Organic Photoredox Catalysis

29. Dongare, P.; MacKenzie, I.; Wang, D.; Nicewicz, D. A.; Meyer, T. J. “Oxidation of Alkyl Benzenes by a Flavin Photooxidation Catalyst on Nanostructured Metal-Oxide Films” Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 9279-9283.

Oxidation of Alkyl Benzenes by a Flavin Photooxidation Catalyst on Nanostructured Metal-Oxide Films

28. Margrey, K. A.; McManus, J. B.; Bonazzi, S.; Zecri, F.; Nicewicz, D. A. “Predictive Model for Site-Selective Aryl and Heteroaryl C-H Functionalization via Organic Photoredox Catalysis” J. Am. Chem. Soc. 2017, 139, 11288-11299.

Predictive Model for Site-Selective Aryl and Heteroaryl C-H Functionalization via Organic Photoredox Catalysis

27. Leifeng Wang, Fengjin Wu, Dr. Jiean Chen, Prof. Dr. David A. Nicewicz, Prof. Dr. Yong Huang “Visible-Light-Mediated [4+2] Cycloaddition of Styrenes: Synthesis of Tetralin Derivatives.” Angew. Chem. Int. Ed. 2017, 56, 6896–6900.

Visible-Light-Mediated [4+2] Cycloaddition of Styrenes: Synthesis of Tetralin Derivatives

26. McManus, J. B.; Nicewicz, D. A. “Direct C-H Cyanation of Arenes via Organic Photoredox Catalysis.” J. Am. Chem. Soc. 2017, 139, 2880-2883.

Direct C-H Cyanation of Arenes via Organic Photoredox Catalysis

25. Griffin, J. D.; Cavanaugh, C. L.; Nicewicz, D. A. “Reversing the Regioselectivity of Halofunctionalization Reactions through Cooperative Photoredox and Copper Catalysis,” Angew. Chem. Int. Ed. 2017, 56, 2097-2100.

Reversing the Regioselectivity of Halofunctionalization Reactions through Cooperative Photoredox and Copper Catalysis


23. Joshi-Pangu, A.; Lévesque, F.; Roth, H. G.; Oliver, S. F.; Campeau, L. -C.; Nicewicz, D. A.; DiRocco, D. A. “Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis.” J. Org. Chem., 2016, 81, 7244-7249. Invited contribution for special issue on photoredox catalysis.

Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis

22. Romero, N. A.; Nicewicz, D. A. “Organic Photoredox Catalysis.” Chem Rev., 2016, 116, 10075–10166.

Organic Photoredox Catalysis


20. Perkowski, A. J.; Cruz, C. L.; Nicewicz, D. A. “An Ambient Temperature Newman-Kwart Rearrangment Mediated by Organic Photoredox Catalysis.” J. Am. Chem. Soc., 2015, 137, 15684–15687.

An Ambient Temperature Newman-Kwart Rearrangment Mediated by Organic Photoredox Catalysis


18. Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. “Site-Selective Arene C­–H Amination via Photoredox Catalysis.” Science, 2015, 349, 1326–1330.

Site-Selective Arene C­–H Amination via Photoredox Catalysis

17. Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. “Hydrodecarboxylation of Carboxylic and Malonic Acid Derivatives via Organic Photoredox Catalysis: Substrate Scope and Mechanistic Insight.” J. Am. Chem. Soc. 2015, 137, 11340–11348.

Hydrodecarboxylation of Carboxylic and Malonic Acid Derivatives via Organic Photoredox Catalysis: Substrate Scope and Mechanistic Insight

16. Perkowski, A. J.; You, W.; Nicewicz, D. A. “Visibile Light Photoinitiated Metal-Free Living Cationic Polymerization of 4-Methoxystyrene.” J. Am. Chem. Soc. 2015, 137, 7580-7583

Visibile Light Photoinitiated Metal-Free Living Cationic Polymerization of 4-Methoxystyrene

15. Gesmundo, N. J.; Grandjean, J. M.; Nicewicz, D. A. “Amide and Amine Nucleophiles in Polar Radical Crossover Cycloadditions: Synthesis of g-Lactams and Pyrrolidines.” Org. Lett. 17, 2015, 1316-1319

Amide and Amine Nucleophiles in Polar Radical Crossover Cycloadditions: Synthesis of g-Lactams and Pyrrolidines




11. Wilger, D. J.; Grandjean, J. M.; Lammert, T.; Nicewicz, D. A. “The Direct Anti-Markovnikov Addition of Mineral Acids to Syrenes.” Nature Chem. 2014, 6, 720-726.

The Direct Anti-Markovnikov Addition of Mineral Acids to Syrenes.

10. Gesmundo, N. J.; Nicewicz, D. A. “Cyclization-Endoperoxidation Cascade Reactions of Dienes Mediated by a Pyrylium Photoredox Catalyst.” Beilstein J. Org. Chem. 2014, 10, 1272-1281 — Invited submission for special issue: “Organic Synthesis Using Photoredox Catalysis”.

Cyclization-Endoperoxidation Cascade Reactions of Dienes Mediated by a Pyrylium Photoredox Catalyst.


8. Nicewicz, D. A.; Hamilton, D. S. “Organic Photoredox Catalysis as a General Strategy for Anti-Markovnikov Hydrofunctionalization.” Synlett 2014, 1191-1196 — Invited submission.

Organic Photoredox Catalysis as a General Strategy for Anti-Markovnikov Hydrofunctionalization.

7. Nicewicz, D. A.; Nguyen, T. M. “Recent Applications of Organic Dyes as Photoredox Catalysts.” ACS Catal. 2014, 4, 355-360 — Invited submission.

Recent Applications of Organic Dyes as Photoredox Catalysts.

6. Perkowski, A. J.; Nicewicz, D. A. “Direct Catalytic Anti-Markovnikov Addition of Carboxylic Acids to Alkenes.” J. Am. Chem. Soc. 2013, 135, 10334-10337.

Direct Catalytic Anti-Markovnikov Addition of Carboxylic Acids to Alkenes.

5. Nguyen, T. M.; Nicewicz, D. A. “Anti-Markovnikov Hydroamination of Alkenes Catalyzed by an Organic Photoredox System.” J. Am. Chem. Soc. 2013, 135, 9588-9591.

Anti-Markovnikov Hydroamination of Alkenes Catalyzed by an Organic Photoredox System

4. Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. “Catalytic Hydrotrifluoromethylation of Styrenes and Unactivated Aliphatic Alkenes via an Organic Photoredox System.” Chem. Sci. 2013, 4, 3160-3165.

Catalytic Hydrotrifluoromethylation of Styrenes and Unactivated Aliphatic Alkenes via an Organic Photoredox System



1. Hamilton, D. S.; Nicewicz, D. A. “Direct Catalytic Anti-Markovnikov Hydroetherification of Alkenols.” J. Am. Chem. Soc. 2012, 134, 18577-18580.

Direct Catalytic Anti-Markovnikov Hydroetherification of Alkenols